Engineering Yarrowia lipolytica to Produce Glycoproteins Homogeneously Modified with the Universal Man3GlcNAc2 N-Glycan Core
نویسندگان
چکیده
Yarrowia lipolytica is a dimorphic yeast that efficiently secretes various heterologous proteins and is classified as "generally recognized as safe." Therefore, it is an attractive protein production host. However, yeasts modify glycoproteins with non-human high mannose-type N-glycans. These structures reduce the protein half-life in vivo and can be immunogenic in man. Here, we describe how we genetically engineered N-glycan biosynthesis in Yarrowia lipolytica so that it produces Man(3)GlcNAc(2) structures on its glycoproteins. We obtained unprecedented levels of homogeneity of this glycanstructure. This is the ideal starting point for building human-like sugars. Disruption of the ALG3 gene resulted in modification of proteins mainly with Man(5)GlcNAc(2) and GlcMan(5)GlcNAc(2) glycans, and to a lesser extent with Glc(2)Man(5)GlcNAc(2) glycans. To avoid underoccupancy of glycosylation sites, we concomitantly overexpressed ALG6. We also explored several approaches to remove the terminal glucose residues, which hamper further humanization of N-glycosylation; overexpression of the heterodimeric Apergillus niger glucosidase II proved to be the most effective approach. Finally, we overexpressed an α-1,2-mannosidase to obtain Man(3)GlcNAc(2) structures, which are substrates for the synthesis of complex-type glycans. The final Yarrowia lipolytica strain produces proteins glycosylated with the trimannosyl core N-glycan (Man(3)GlcNAc(2)), which is the common core of all complex-type N-glycans. All these glycans can be constructed on the obtained trimannosyl N-glycan using either in vivo or in vitro modification with the appropriate glycosyltransferases. The results demonstrate the high potential of Yarrowia lipolytica to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.
منابع مشابه
Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2
BACKGROUND Protein-based therapeutics represent the fastest growing class of compounds in the pharmaceutical industry. This has created an increasing demand for powerful expression systems. Yeast systems are widely used, convenient and cost-effective. Yarrowia lipolytica is a suitable host that is generally regarded as safe (GRAS). Yeasts, however, modify their glycoproteins with heterogeneous ...
متن کاملEngineering of the yeast Yarrowia lipolytica for the production of glycoproteins lacking the outer-chain mannose residues of N-glycans.
In an attempt to engineer a Yarrowia lipolytica strain to produce glycoproteins lacking the outer-chain mannose residues of N-linked oligosaccharides, we investigated the functions of the OCH1 gene encoding a putative alpha-1,6-mannosyltransferase in Y. lipolytica. The complementation of the Saccharomyces cerevisiae och1 mutation by the expression of YlOCH1 and the lack of in vitro alpha-1,6-ma...
متن کاملSchistosoma mansoni-infected mice produce antibodies that cross-react with plant, insect, and mammalian glycoproteins and recognize the truncated biantennaryN-glycan Man3GlcNAc2-R.
To reveal the role of cross-reactive carbohydrate determinants in the host immune response in helminth infections and allergenicity, we developed monoclonal antibodies (mAbs) that recognize glycan epitopes present on glycoconjugates from both helminths and plants. An IgM mAb (100-4G11-A) was selected from a panel of anti-glycan mAbs generated from Schistosoma-infected or immunized mice because ...
متن کاملEssential role of YlMPO1, a novel Yarrowia lipolytica homologue of Saccharomyces cerevisiae MNN4, in mannosylphosphorylation of N- and O-linked glycans.
Mannosylphosphorylation of N- and O-glycans, which confers negative charges on the surfaces of cells, requires the functions of both MNN4 and MNN6 in Saccharomyces cerevisiae. To identify genes relevant to mannosylphosphorylation in the dimorphic yeast Yarrowia lipolytica, the molecular functions of five Y. lipolytica genes showing significant sequence homology with S. cerevisiae MNN4 and MNN6 ...
متن کاملThe optimization of Naringenin biosynthesis pathway using Yarrowia lipolitica cell culture
Yarrowia lipolytica, as a good cell factory to speed up the production of plant pharmaceutical components, has been considered to be one of the most important and attractive micro-organisms in recent years, due to its high secretion capacity, limited glycosylation, large range of genetic markers and molecular tools. Naringenin, as a central core of flavonoids production, plays important roles b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012